منابع مشابه
Continuous Control and the Algebraic L-theory Assembly Map
In this work, the assembly map in L-theory for the family of finite subgroups is proven to be a split injection for a class of groups. Groups in this class, including virtually polycyclic groups, have universal spaces that satisfy certain geometric conditions. The proof follows the method developed by Carlsson-Pedersen to split the assembly map in the case of torsion free groups. Here, the cont...
متن کاملSplitting with Continuous Control in Algebraic K-theory
In this work, the continuously controlled assembly map in algebraic K-theory, as developed by Carlsson and Pedersen, is proved to be a split injection for groups Γ that satisfy certain geometric conditions. The group Γ is allowed to have torsion, generalizing a result of Carlsson and Pedersen. Combining this with a result of John Moody, K0(kΓ) is proved to be isomorphic to the colimit of K0(kH)...
متن کاملHodge Theory for Combinatorial Geometries
The matroid is called loopless if the empty subset of E is closed, and is called a combinatorial geometry if in addition all single element subsets of E are closed. A closed subset of E is called a flat of M, and every subset of E has a well-defined rank and corank in the poset of all flats of M. The notion of matroid played a fundamental role in graph theory, coding theory, combinatorial optim...
متن کاملGalois geometries and coding theory
Galois geometries and coding theory are two research areas which have been interacting with each other for many decades. From the early examples linking linear MDS codes with arcs in finite projective spaces, linear codes meeting the Griesmer bound with minihypers, covering radius with saturating sets, links have evolved to functional codes, generalized projective Reed–Muller codes, and even fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1937
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.23.1.16